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Statistical Analysis of Atmospheric
Flight Gust Loads Analysis Data

J. B. Clark,*M. C. Kim," and A. M. Kabe*
The Aerospace Corporation, Los Angeles, California 90009-2957

To establish launch vehicle loads during atmospheric flight, the statistical characteristics of the turbulence/gust-
induced loadsneed to be determined. Recently, a Monte Carlo analysis procedure was developed that uses measured
turbulence/gusts to establish launch-vehicle loads. The procedures developed to characterize the distribution of
the data and to calculate tolerance bounds on these Monte Carlo loads are presented.

Nomenclature
C = confidence level
E = load enclosure
Fy or Gy = cumulative distribution function of X
F, = cumulative distribution function of a standard
normal random variable
fx = probability density function of X
n = sample size
q = p-quantile of X

s = sample standard deviation

Tx = tolerance bound for X

tLys,p = p-quantile of noncentral 7 distribution with n
degrees of freedom and noncentrality parameter &

X = random variable

x = sample mean

VA = standard normal random variable

Zp = standard normal p-quantile

Introduction

UST loads analyses are performed to establishlaunch-vehicle

and space-vehicleloads as a result of turbulence encountered
during atmosphericflight.!"? Historically,launch-vehicleloads have
been calculated by applying a synthetic gust profile whose am-
plitude, wavelength, and shape were selected to induce loads of
a desired magnitude’ In Ref. 3 a new Monte Carlo analysis ap-
proach that uses the turbulentcomponent of measured wind profiles
is presented. The approach requires statistical analysis of extensive
loads analysis results. This paper presents the statistical analyses
performed to establish a suitable distribution for gust loads so that
tolerance bounds on these loads could be calculated.

The objective of this work was to characterize the statistical dis-
tribution of the gustloads data in Ref. 3 and to determine the 99.7%
load enclosure. The 99.7% load enclosureis the 3-c load enclosure
for data having a normal, or Gaussian, distribution, i.e., 99.7% of
normal data lie within three standard deviations of the mean of the
distribution. For data with statistical distributions other than nor-
mal, however, 3-c is not synonymous with 99.7% coverage, and
the 99.7% enclosure may be significantly different from the 3-c
enclosure. Because of the uncertainty in the parameters of the sta-
tistical distribution,the 99.7% enclosureis presented as a 90% upper
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confidence bound on the 99.7% enclosure. In statistical terminol-
ogy a 0.997/0.90 upper tolerance bound for the data is determined.
Two tolerance bound procedures are described: one that assumes a
gamma distribution for the gust loads and is most suitable for small
sample sizes, and another that makes no distributional assumptions
but is useful only if the sample size is sufficiently large.

Background

The application and theory of statistical tolerance bounds, where
the derivationof tolerance bounds for normal distributionsas well as
for certain otherdistributions,are discussed *> Toleranceboundsare
derived for the generalized gamma distribution, a class of statistical
distributions that includes the exponential, two-parameter gamma,
and Weibull distributions® The procedure presentedin Ref. 6, how-
ever, requires that some parameters of the distribution be known in
order to calculate a tolerance bound. This procedure is not applica-
ble to this work because all parameters of the gust-induced loads
distributionneed to be estimated from the data.

Characterization of Gust-Induced Loads

Gusts, which for the purposes of this discussion are defined as
the nonpersistent, relatively short wavelength components of the
winds’ that a launch vehicle will encounter during flight through
the atmosphere, induce loads that have been approximated by a
gamma distribution ?

The distribution of a typical set of gust loads in Ref. 3 is shown
in Fig. 1. The asymmetry of the data suggests that modeling the
data with the normal distribution and calculating the load enclosure
using 3-o limits could significantly underpredict the true 99.7%
enclosure.

Probability plots are a useful tool for assessing the distributionof
data. A probability plot compares the observed data to what would
be expected if the data had a particular distribution. If data have a
normal distribution, the data will tend to lie on a straight line on a
normal probability plot. Probability plots for other distributions can
likewise be constructed,and data with a given statisticaldistribution
will tend to lie on a straight line on the corresponding probability
plot.

Normal and gamma probability plots for a typical set of gustload
data in Ref. 3 are shown in Figs. 2 and 3. To create the gamma
probability plot, an estimate of the shape parameter of the gamma
distribution was necessary; the maximum likelihood estimate of the
parameter was usedin this plot. Superimposedon eachplotis a least-
squares, best-fit straightline. These plots indicate that modeling the
gust-inducedload with a normal distributionis inappropriate,and a
gamma distribution models these loads fairly well.

Determining the 0.997 Load Enclosure

If the statistical distribution of the gust loads and the parameters
of that distribution were known, it is straightforwardto find a 0.997
load enclosure by integration. For normal data a standard normal
probability table can be used, with the result that 99.7% of the data
lies within three standard deviations of the mean. For a general
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Fig. 1 Typicaldistribution of gust-induced load for a heavy-lift launch
vehicle.
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Fig. 2 Heavy-liftlaunch-vehicle gust-induced loads® normal probabil-
ity plot.
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Fig. 3 Gamma probability plot for the data shown in Fig. 2.

probability density fx the 0.997 load enclosure is the value of E,
satisfying

E
/ fx(x)dx =0.997

If the true distribution is unknown (although the form of the dis-
tribution may be known, the parameters may not be), uncertainty
in the load enclosure is introduced, and the 0.997 load enclosure
can only be estimated. It is possible to place an upper confidence
bound on this estimate, resulting in a one-sided tolerance bound
on the load enclosure. In this work the goal is to find a 0.997/0.90
tolerance bound, i.e., a 90% upper confidence bound on the 0.997
load enclosure.

For normal data a p/ C (e.g., 0.997/0.90) tolerance bound is of
the form X + ks, where k is based on the noncentral ¢ distribution:

k= (tn—l,ﬁz,,,l —c)| NG

Table1 Coverage probability of bootstrapped
0.997/0.90 gamma tolerance intervals

Gamma shape Sample size

parameter 10 30 100
1.5 0.87 0.90 0.92
3.0 0.86 0.90 0.92
5.0 0.85 0.90 0.93
10.0 0.89 0.90 0.90

where +/(n)z, is the noncentrality parameter of the distributionand
Z, is the standard normal p-quantile (e.g., Zo.97s =1.96). Values of
k are tabulated in Ref. 5 or can be readily computed.

Tolerance bounds for data other than normal data can be more
difficultto determine. For gammadatatwo proceduresare described.
The first method, using a bootstrap statistical procedure, is useful
for sample sizes under 1000 or so. The second procedure, useful
for sample sizes greater than about 1000, is based on a normal
transformation of the data.

Bootstrap Procedure

The bootstrapping procedure is a resampling procedure that is
useful for determining confidence bounds on estimates.!®!! Both
nonparametric and parametric bootstrap procedures exist; a para-
metric procedure is used here to determine tolerance bounds for
data having a two-parameter gamma distribution. Reference 10 de-
scribesthe BC, parametricbootstrapthatis used here. The bootstrap
and the BC, method, in particular, have nice asymptotic properties,
but in order to demonstrate the effectiveness of this procedure for
estimating percentilesof gamma data based on relatively small sam-
ples, Monte Carlo simulations were performed. For sample sizes of
10, 30, and 100, and gamma shape parameters of 1.5, 3, 5, and 10
(the resultsare independentof the scale parameter of the gamma dis-
tribution), the coverage probabilities of the BC, tolerance bounds
were estimated. Table 1 summarizes the results of the Monte Carlo
simulation. The table entries are the proportion of 1000 bootstrap
0.997/0.90 toleranceintervalsthat covered the true 0.997 quantile of
a gamma distribution with given shape parameter and given sample
size. In each case approximately 90% of the bootstrappedtolerance
intervals include the true 0.997 quantile of the distribution, indi-
cating that the BC, tolerance bound results in accurate tolerance
bounds.

Drawbacks to the parametric bootstrap procedure for calculating
tolerance bounds include the following: 1) It is computer-intensive,
taking a few minutes to perform for sample sizes on the order of
1000;and 2)itis sensitiveto the assumptionof a gamma distribution.
The second drawback cannot be avoided by using a nonparametric
bootstrap;itis not possibleto estimate the 0.997 enclosure of a small
set of data without making assumptions about the distribution. The
first drawback is less of an issue.

Applying this method to the data shown in Fig. 1, we obtain a
0.997/0.90 tolerance bound of 10,960,000 in.-Ib.

Nonparametric Procedure

A nonparametric method of calculating a tolerance bound can be
used when the sample size is sufficiently large. This methodrelies on
astandardresultof probability theory that for a continuousprobabil-
ity distribution a nondecreasing function exists that, when applied
to the data, transforms the data to a normal distribution: If G is the
cumulative distribution function of a continuousrandom variable X
and F, is the standardnormal cumulative distributionfunction, then
f(X) has a standard normal distribution, where f(-) =F;'[G()].
See Fig. 4 for a graphical explanation of this result, which follows
from the probability integral transformation.!? This result is useful
for estimating tolerance bounds because if the transforming func-
tion f can be accurately estimated, tolerance bounds for nonnormal
data can be calculated using normal tolerance bounds.

To see this, suppose f is known. Let X be arandom variable from
a continuous distribution G so that f(X) =Z is a standard normal
random variable.Let {x;, x5, ..., x, }beasample from G, and let T,
be the p/C tolerance bound based on {f(x;), f(x3), ..., f(x)},
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Fig. 4 Plot demonstrating the normalizing transformation. Fz(X) is
the standard normal cumulative distribution function (Cdf), and G(X)
is the Cdf of a general distribution. The normalizing function in this
case is the one that transforms, for example, — 3 to — 1.1 and 3 to 0.9.

using normal tolerance bound theory. Define z,, to be the p-quantile
of a standard normal distribution. By the definition of a p/ C toler-
ance bound, we have

C =P(T; >q,)

=P[f7(12) > £7'(z,)]
Let Tx = f~'(Tz) and ¢ =f"'(z,), and we have
C =P(TX > q;()

If we can show that ql’f is the p-quantile of the distribution of X,

ie.,
a
/ gx)dx =p

then we have demonstrated that Ty = f~'(T;) is a p/ C tolerance
interval for X. This is easily shown as follows:

p=P(Z<z)
=P[f (2 < '(z)]
=P(X <q;)

ie. g, isthe p-quantile of X.

If there are sufficient data to estimate the normalizing function
f, or its inverse f~!, tolerance bounds for nonnormal data can be
estimated by f~N(Ty), where T is the tolerance bound assuming a
normal distribution(see Fig. 5). The k-value for a0.997/0.90 normal
toleranceintervalis 2.83 for a sample of 1131. This correspondsto
1.05E+07 for a 0.997/0.90 tolerance bound for the gustloads data
shown in Fig. 5. This can be converted to a k-value by using the
sample mean and standard deviation of the gust loads data. For a
0.997/0.90 tolerance bound estimation of the function f~! in the
vicinity of Tz requires a sample of 1000 or more. For the gustloads,
shown in Fig. 3, a fifth-order polynomial approximates f~' well on
a normal probability plot in the vicinity of 77,.
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Fig. 5 Nonparametric procedure to establish tolerance bounds.

Applying this method to the data shown in Fig. 1, we obtain a
0.997/0.90 tolerance bound of 11,040,000 1n.-Ib.

Conclusions

We have presented two methods of finding tolerance bounds for
gustloads analysisdata. One assumes that the gusts follow a gamma
distribution and are useful for smaller sample sizes. The other does
notrequirethis assumption,butrequiresconsiderablymore data. For
the data shown in Fig. 1, both methods result in similar tolerance
bounds, approximately 11,000,000 in.-Ib for each. The statistical
analysis approach presented here was used to derive the 99.7/90
gust-induced loads in Ref. 3.
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