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Statistical Analysis of Atmospheric
Flight Gust Loads Analysis Data

J. B. Clark,¤ M. C. Kim,† and A. M. Kabe‡

The Aerospace Corporation, Los Angeles, California 90009-2957

To establish launch vehicle loads during atmospheric � ight, the statistical characteristics of the turbulence/gust-
induced loadsneed to be determined.Recently, a MonteCarlo analysisprocedure was developed thatuses measured
turbulence/gusts to establish launch-vehicle loads. The procedures developed to characterize the distribution of
the data and to calculate tolerance bounds on these Monte Carlo loads are presented.

Nomenclature
C = con� dence level
E = load enclosure
FX or G X = cumulative distribution function of X
FZ = cumulative distribution function of a standard

normal random variable
fX = probability density function of X
n = sample size
q X

p = p-quantile of X
s = sample standard deviation
TX = tolerance bound for X
tn, d , p = p-quantile of noncentral t distribution with n

degrees of freedom and noncentralityparameter d
X = random variable
x̄ = sample mean
Z = standard normal random variable
z p = standard normal p-quantile

Introduction

G UST loads analysesare performed to establish launch-vehicle
and space-vehicle loads as a result of turbulence encountered

during atmospheric� ight.1,2 Historically,launch-vehicleloadshave
been calculated by applying a synthetic gust pro� le whose am-
plitude, wavelength, and shape were selected to induce loads of
a desired magnitude.3 In Ref. 3 a new Monte Carlo analysis ap-
proach that uses the turbulentcomponentof measured wind pro� les
is presented. The approach requires statistical analysis of extensive
loads analysis results. This paper presents the statistical analyses
performed to establish a suitable distribution for gust loads so that
tolerance bounds on these loads could be calculated.

The objective of this work was to characterize the statistical dis-
tributionof the gust loads data in Ref. 3 and to determine the 99.7%
load enclosure.The 99.7% load enclosure is the 3- r load enclosure
for data having a normal, or Gaussian, distribution, i.e., 99.7% of
normal data lie within three standard deviations of the mean of the
distribution. For data with statistical distributions other than nor-
mal, however, 3-r is not synonymous with 99.7% coverage, and
the 99.7% enclosure may be signi� cantly different from the 3- r
enclosure. Because of the uncertainty in the parameters of the sta-
tisticaldistribution,the 99.7%enclosureis presentedas a 90%upper
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con� dence bound on the 99.7% enclosure. In statistical terminol-
ogy a 0.997/0.90 upper tolerance bound for the data is determined.
Two tolerance bound procedures are described: one that assumes a
gamma distributionfor the gust loads and is most suitable for small
sample sizes, and another that makes no distributional assumptions
but is useful only if the sample size is suf� ciently large.

Background
The application and theory of statistical tolerance bounds, where

the derivationof toleranceboundsfor normal distributionsas well as
for certainotherdistributions,are discussed.4,5 Toleranceboundsare
derived for the generalizedgamma distribution,a class of statistical
distributions that includes the exponential, two-parameter gamma,
and Weibull distributions.6 The procedurepresented in Ref. 6, how-
ever, requires that some parameters of the distribution be known in
order to calculate a tolerance bound. This procedure is not applica-
ble to this work because all parameters of the gust-induced loads
distribution need to be estimated from the data.

Characterization of Gust-Induced Loads
Gusts, which for the purposes of this discussion are de� ned as

the nonpersistent, relatively short wavelength components of the
winds7 that a launch vehicle will encounter during � ight through
the atmosphere, induce loads that have been approximated by a
gamma distribution.8,9

The distribution of a typical set of gust loads in Ref. 3 is shown
in Fig. 1. The asymmetry of the data suggests that modeling the
data with the normal distributionand calculating the load enclosure
using 3- r limits could signi� cantly underpredict the true 99.7%
enclosure.

Probabilityplots are a useful tool for assessing the distributionof
data. A probability plot compares the observed data to what would
be expected if the data had a particular distribution. If data have a
normal distribution, the data will tend to lie on a straight line on a
normal probabilityplot. Probability plots for other distributionscan
likewisebe constructed,and data with a given statisticaldistribution
will tend to lie on a straight line on the corresponding probability
plot.

Normal and gamma probabilityplots for a typical set of gust load
data in Ref. 3 are shown in Figs. 2 and 3. To create the gamma
probability plot, an estimate of the shape parameter of the gamma
distributionwas necessary; the maximum likelihoodestimate of the
parameterwas used in thisplot.Superimposedoneachplot is a least-
squares, best-� t straight line. These plots indicate that modeling the
gust-inducedload with a normal distribution is inappropriate,and a
gamma distribution models these loads fairly well.

Determining the 0.997 Load Enclosure
If the statistical distribution of the gust loads and the parameters

of that distributionwere known, it is straightforwardto � nd a 0.997
load enclosure by integration. For normal data a standard normal
probability table can be used, with the result that 99.7% of the data
lies within three standard deviations of the mean. For a general
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Fig. 1 Typical distribution of gust-induced load for a heavy-lift launch
vehicle.

Fig. 2 Heavy-lift launch-vehiclegust-induced loads3 normalprobabil-
ity plot.

Fig. 3 Gamma probability plot for the data shown in Fig. 2.

probability density fX the 0.997 load enclosure is the value of E ,
satisfying

Z E

¡ 1
fX (x) dx = 0.997

If the true distribution is unknown (although the form of the dis-
tribution may be known, the parameters may not be), uncertainty
in the load enclosure is introduced, and the 0.997 load enclosure
can only be estimated. It is possible to place an upper con� dence
bound on this estimate, resulting in a one-sided tolerance bound
on the load enclosure. In this work the goal is to � nd a 0.997/0.90
tolerance bound, i.e., a 90% upper con� dence bound on the 0.997
load enclosure.

For normal data a p/ C (e.g., 0.997/0.90) tolerance bound is of
the form x̄ + ks, where k is based on the noncentral t distribution:

k =
¡
tn ¡ 1,

p
nz p ,1 ¡ C

¢
ê p

n

Table 1 Coverage probability of bootstrapped
0.997/0.90 gamma tolerance intervals

Sample sizeGamma shape
parameter 10 30 100

1.5 0.87 0.90 0.92
3.0 0.86 0.90 0.92
5.0 0.85 0.90 0.93
10.0 0.89 0.90 0.90

where
p

(n)z p is the noncentralityparameter of the distributionand
z p is the standard normal p-quantile (e.g., z0.975 =1.96). Values of
k are tabulated in Ref. 5 or can be readily computed.

Tolerance bounds for data other than normal data can be more
dif� cult to determine.For gammadata two proceduresaredescribed.
The � rst method, using a bootstrap statistical procedure, is useful
for sample sizes under 1000 or so. The second procedure, useful
for sample sizes greater than about 1000, is based on a normal
transformationof the data.

Bootstrap Procedure
The bootstrapping procedure is a resampling procedure that is

useful for determining con� dence bounds on estimates.10,11 Both
nonparametric and parametric bootstrap procedures exist; a para-
metric procedure is used here to determine tolerance bounds for
data having a two-parameter gamma distribution.Reference 10 de-
scribes the BCa parametricbootstrapthat is used here.The bootstrap
and the BCa method, in particular, have nice asymptotic properties,
but in order to demonstrate the effectiveness of this procedure for
estimatingpercentilesof gamma data basedon relativelysmall sam-
ples, Monte Carlo simulations were performed.For sample sizes of
10, 30, and 100, and gamma shape parameters of 1.5, 3, 5, and 10
(the resultsare independentof the scaleparameterof the gammadis-
tribution), the coverage probabilities of the BCa tolerance bounds
were estimated. Table 1 summarizes the results of the Monte Carlo
simulation. The table entries are the proportion of 1000 bootstrap
0.997/0.90 toleranceintervalsthat covered the true 0.997quantileof
a gamma distributionwith given shape parameter and given sample
size. In each case approximately90% of the bootstrappedtolerance
intervals include the true 0.997 quantile of the distribution, indi-
cating that the BCa tolerance bound results in accurate tolerance
bounds.

Drawbacks to the parametric bootstrap procedure for calculating
tolerancebounds include the following: 1) It is computer-intensive,
taking a few minutes to perform for sample sizes on the order of
1000;and 2) it is sensitiveto theassumptionof a gamma distribution.
The second drawback cannot be avoided by using a nonparametric
bootstrap;it is notpossibleto estimate the 0.997enclosureof a small
set of data without making assumptions about the distribution.The
� rst drawback is less of an issue.

Applying this method to the data shown in Fig. 1, we obtain a
0.997/0.90 tolerance bound of 10,960,000 in.-lb.

Nonparametric Procedure
A nonparametricmethod of calculatinga tolerance bound can be

used when the sample size is suf� ciently large.This methodrelieson
a standardresult of probabilitytheory that for a continuousprobabil-
ity distribution a nondecreasing function exists that, when applied
to the data, transforms the data to a normal distribution: If G is the
cumulativedistributionfunction of a continuousrandom variable X
and FZ is the standardnormal cumulativedistributionfunction,then
f (X ) has a standard normal distribution, where f (¢ ) = F ¡ 1

Z [G(¢ )].
See Fig. 4 for a graphical explanation of this result, which follows
from the probability integral transformation.12 This result is useful
for estimating tolerance bounds because if the transforming func-
tion f can be accuratelyestimated, tolerancebounds for nonnormal
data can be calculated using normal tolerance bounds.

To see this, suppose f is known.Let X be a randomvariable from
a continuous distribution G so that f (X) = Z is a standard normal
randomvariable.Let {x1 , x2, . . . , xn}be a sample from G , and let TZ

be the p / C tolerance bound based on { f (x1), f (x2), . . . , f (xn)},
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Fig. 4 Plot demonstrating the normalizing transformation. FZ (X) is
the standard normal cumulative distribution function (Cdf), and G(X)
is the Cdf of a general distribution. The normalizing function in this
case is the one that transforms, for example, ¡ 3 to ¡ 1.1 and 3 to 0.9.

using normal tolerance bound theory.De� ne z p to be the p-quantile
of a standard normal distribution.By the de� nition of a p/ C toler-
ance bound, we have

C = P(TZ > qp)

= P
£

f ¡ 1(TZ ) > f ¡ 1(z p)
¤

Let TX = f ¡ 1(TZ ) and q X
p = f ¡ 1(z p), and we have

C = P
¡
TX > q X

p

¢

If we can show that q X
p is the p-quantile of the distribution of X ,

i.e.,
Z q X

p

¡ 1
g(x) dx = p

then we have demonstrated that TX = f ¡ 1(TZ ) is a p / C tolerance
interval for X . This is easily shown as follows:

p = P(Z · z p)

= P
£

f ¡ 1(Z ) · f ¡ 1(z p)
¤

= P
¡
X · q X

p

¢

i.e., q X
p is the p-quantile of X .

If there are suf� cient data to estimate the normalizing function
f , or its inverse f ¡ 1 , tolerance bounds for nonnormal data can be
estimated by f ¡ 1(TZ ), where TZ is the tolerance bound assuming a
normal distribution(see Fig. 5). The k-value for a 0.997/0.90 normal
tolerance interval is 2.83 for a sample of 1131. This corresponds to
1.05E +07 for a 0.997/0.90 tolerance bound for the gust loads data
shown in Fig. 5. This can be converted to a k-value by using the
sample mean and standard deviation of the gust loads data. For a
0.997/0.90 tolerance bound estimation of the function f ¡ 1 in the
vicinityof TZ requires a sample of 1000 or more. For the gust loads,
shown in Fig. 3, a � fth-orderpolynomialapproximates f ¡ 1 well on
a normal probability plot in the vicinity of TZ .

Fig. 5 Nonparametric procedure to establish tolerance bounds.

Applying this method to the data shown in Fig. 1, we obtain a
0.997/0.90 tolerance bound of 11,040,000 in.-lb.

Conclusions
We have presented two methods of � nding tolerance bounds for

gust loads analysisdata. One assumes that the gusts follow a gamma
distribution and are useful for smaller sample sizes. The other does
not requirethis assumption,but requiresconsiderablymoredata.For
the data shown in Fig. 1, both methods result in similar tolerance
bounds, approximately 11,000,000 in.-lb for each. The statistical
analysis approach presented here was used to derive the 99.7/90
gust-induced loads in Ref. 3.
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